
Dynamic Linking in Haskell

Hampus Ram
d00ram@dtek.chalmers.se

1 Introduction

Today many applications can be enhanced by the
use of so-called plugins, pieces of code that can be
loaded into an application at any time. These plu-
gins often come in the form of dynamically linked
libraries (shared objects in UNIX-speek) and until
very recently there has been no common way to
use such libraries in Haskell programs. Now sup-
port for this exist in the Hierarchical Libraries as the
System.Posix.DynamicLinker module.

However, this module only exports the operating-
systems underlying functions for loading dynamic lib-
raries, which are designed to load C-functions. Cre-
ating and using such modules written in Haskell adds
extra problems.

What is needed is thus some other way to load code
dynamically without the problems associated with us-
ing functions designed in first hand to work with C-
code.

2 GHCi and dynamic loading

Enter GHCi. The interactive version of the Glasgow
Haskell Compiler (GHC) has for some years been able
to dynamically load its own object files and execute
their code. Fortunately for us the functions doing
this lies within the GHC runtime system (RTS) and
is thus available to us in GHC-compiled programs as
well.

The GHC RTS contains the following func-
tions1 that is used by GHCi to dynamically load
functions: loadObj, unloadObj, resolveObjs and
lookupSymbol.

To use a compiled module it is loaded with loadObj
and then the functions are resolved with resolveObj.
When that has been done functions can be loaded
using lookupSymbol which will yield a pointer to the
function. When the module is needed no more a call
to unloadObj unloads it.

1Defined in ghc/rts/Linker.c

3 Design of a simple linker

Using the functions from the GHC RTS one can begin
to structure a simple module that captures the basic
functions that one needs to load objects dynamically.

Some of the most basic things one must be able to
do are:

• Load packages as well as modules

• Use different paths and file extensions

• Functions must be real Haskell functions

The first demand is necessary because of the fact
that a compiled module doesn’t contain functions im-
ported from the Prelude and other standard libraries
and thus one must load the GHC base packages con-
taining those functions oneself.

The second demand is due to the fact that this
library is to be used by many different programs in
need of plugin support. Thus one might want to have
plugins end in something else than “.o” and of course
those will be located in different places depending on
the application.

The third comes from getting tired of using
FunPtr:s when dealing with functions loaded with
the System.Posix.DynamicLinker. Having a real
Haskell-function is much better than having a
function-pointer.

Of course there is some implicit demands on this
library that cannot be set aside, such as the need to
correctly handle hierarchical libraries and working on
different platforms.

4 Preexisting software

There exist one library today that implements func-
tions that exploit the GHC RTS to dynamically load
object files. That library is the RuntimeLoader by
Andre Pang. However that library is not much more
than a simple wrapper around the RTS functions and
is therefore somewhat hard to use. It also is totaly
unaware of hierarchical modules which is, as stated
before, a too big feature to not be included in such a
library.

1



5 Implementation of a simple
linker

First one need the functions exported by the RTS
and they are introduced by using the Haskell Foreign
Function Interface (FFI), then most work is really
writing glue code to translate between the C-world of
the RTS and the Haskell-world.

However one major design decision was made dur-
ing this stage, namely to logically separate packages
and modules. This since packages are really collec-
tions of modules and have more of a support-role than
anything else. For instance you really do not want to
load any functions from a package since you could use
it directly in your program anyways.

The module will thus export the following: Types
for dynamic modules and packages. Functions to load
and unload such and a function to load functions from
a module. Furthermore the module provides func-
tions that return the path to the loaded modules and
packages which can help debugging or if you want to
implement so called crisp loading. Last, the module
exports a function for loading dynamically linked lib-
raries (shared objects) since sometimes Haskell pack-
ages needs them.

A simpler way to deal with situations when dy-
namically linked libraries are needed are however to
link those libraries into the main program in the
first place thus avoiding unecessary logic and if you
really need control over your libraries, please use
System.Posix.DynamicLinker instead.

When loading modules care must be taken to make
sure that any hierarchical libraries are threated cor-
rectly and an equal care must be taken when loading
libraries to ensure that any supporting cbits-packages
are loaded too.

All functions will throw exceptions if anything fails
and, unfortunately, they might write some messages
to the standard error whether you catch the errors or
not since the GHC RTS will output some diagnostics
for certain errors.

6 Improving the simple linker

The simple linker provides basic functionality needed
to dynamically link in Haskell modules into your pro-
gram, but it does not provide any intelligence or ad-
ded value. In a real program one probably needs to
implement quite a few more things to simplify coding.
A better library needs to be written.

Talking with friends of mine planning to write
an implementation of Erik Meijer and Daan Leijen’s
Haskell Server Pages, a project that will rely heavilly

on dynamic loading, a number of features needed in
addition to those provided by the simple linker came
up.

The most prominent were:

• Safe loading

• Thread safety

• Crisp loading

• Dependency chasing

• Cascading unloading

• Automatic symbol resolving

Safe loading is simply that loading a module twice
should not throw an exception as in the simple linker
but instead return the allready loaded library. Also if
you load a module twice one call to unload it should
not really do so since it might yet be needed.

Thread safety should be implemented to guarantee
that two threads does not interfere with eachother by
for example trying to load the same module at the
same time.

Crisp loading means that if the modules file on disk
has changed since last loaded it should be reloaded to
provide the latest functionality.

Dependency chasing means that you let the system
load dependencies by itself thus letting the program-
mer worry about other things. This is however, as we
will see, not a pice of cake to implement as simply as
one would like.

Cascading unloading is quite similar to dependency
chasing and has the same problems when it comes to
implementation. When a module is unloaded all mod-
ules it depends on should also be unloaded, unless of
course they are needed by other modules still loaded.

Automatic symbol resolving is just what is says.
Unlike the simple linker with which you need to call a
separate function when you want to resolve functions
this should be done automatically when needed.

7 Implementation of a smart
linker

To implement a smarter linker with the above proper-
ties was not a simple thing to do. Some compromises
had to be done to not make the code overly complic-
ated and unportable.

Safe loading was quite simple to solve by using a
state in which all loaded modules reside and then ref-
erence count them. For each load the reference count
was increased and for each unload decreased. Only
when the module cant’t be found in the state it is

2



loaded and only when the count reach zero the mod-
ule really is unloaded.

Thread safety was also quite simple to achieve. By
storing all state in an MVar and taking hold of that
MVar in each public function one is guaranteed that
only one function at a time is doing dynamic linking,
at least as long as only one MVar is created (which is
not guaranteed).

Crisp loading is implemented by a reload-function
that optionally can perform this reload only if the
module has been changed since last loaded. This is
implemented by storing the last known modification
time in the state and comparing with it.

Dependency chasing and cascading unloading is not
very simple to do automatically since all information
that you can get from a object file is which func-
tions it export and which it has undefined, not where
to find the objects/packages containg the undefined
references. It would be too much trouble implement-
ing this, especially since the format of object files are
platform-dependent. GHCi solves this by looking at
the .hi-files that the compiler emits but this library
takes a simpler way out.

It does not support true dependency chasing, but
lets the programmer specify dependecies between
modules and packages and then automatically looks
up those when loading a module. The dependencies
are then saved in the state and used when unloading
a module ensuring that everything is unloaded cor-
rectly.

When it comes to automatic symbol resolving one
could do many things, for instance one could resolve
functions each time one tries to load a function since
it is first then symbols need to resolve. This is how-
ever not very good since this can lead to many une-
cessary calls to resolve functions. What is really done
is resolving functions after a module has been loaded
at top level. Since all dependencies should have been
loaded by then all functions should resolve.

Unlike the simple linker no distinction is made
between modules and packages, mostly due to sim-
plicity, but since the underlying library is the simple
linker one still can’t load functions from packages.
Dynamically linked libraries are however still treated
the same way and can thus only be loaded and noth-
ing more.

The state contained in the MVar is the loaded mod-
ules stored in a hash table, a dependency map stored
in a hash table and some paths and other strings used
in constructing the real paths from module and pack-
age names. The use of hash tables have many pur-
poses, firstly it provides a quite fast lookup method,
secondly copying the state only copies pointers to the
tables so it will be resonaby fast compared to if Fi-

niteMaps or similar were used, lastly they eliminate
the need for updating the state thus providing a con-
sistent state if any functions would fail.

The state could have been provided implicitly by
embedding it in a state monad but this has not been
done due to the fact that it probably would be ne-
cessary to embed large parts of the program in this
new monad leading to the need for heavy lifting of
the normal IO operations.

8 Further improvements

One thing that is lacking in the smart linker is dir-
ect support for loading modules using paths directly
as can be done in the simple linker. However it is
not simple to add such a feature to the current lib-
rary since it would be very hard, or at least confus-
ing, when it comes to resolving dependencies with a
mixture of absolut paths and qualified names to deal
with.

Further improvements would be adding functions
to inspect the current state and perhaps some to al-
ter it in bigger ways such as unloading all currently
loaded modules.

9 Examples

Here are two very simple examples highlighting the
differences between the two libraries, the simple linker
(DynamicLinker) and the smart linker (SmartLinker).
Both examples loads a module Foo.Bar that depends
on the base library and then loads the function foo
from that module. The most important thing to note
is the lack of need to explicitly load and unload the
base package in the example with SmartLinker. Also
there is no need for explicit function resolving.

import DynamicLinker

main = do basep <- loadPackage
"base"
(Just ppath)
Nothing Nothing

modm <- loadModule
"Foo.Bar"
Nothing Nothing

resolveFunctions
func <- loadFunction modm

"foo" :: IO Int
print func
unloadModule modm
unloadPackage basep

where ppath = "/usr/lib/ghc"

3



import SmartLinker

main = do env <- createSmartEnvironment
(Nothing, Nothing)
(Just ppath,
Nothing,
Nothing)

addDependency env
"Foo.Bar"
"base"

modm <- loadModule env "Foo.Bar"
func <- loadFunction env modm

"foo" :: IO Int
print func
unloadModule env modm

where ppath = "/usr/lib/ghc"

4


	Introduction
	GHCi and dynamic loading
	Design of a simple linker
	Preexisting software
	Implementation of a simple linker
	Improving the simple linker
	Implementation of a smart linker
	Further improvements
	Examples

